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ABSTRACT

,The usual approach to detecting corners in shapes in-
volves first segmenting the shape, then locating the corners
in its boundary. We present several techniques for detect-
ing corners of shapes in gray-level images, without prior
segmentation.
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1. Introduction 4 EI 5 n

The conspicuous corners of a shape play an important

role in human perception (Zusne, 1970], and are of similar

importance for the recognition of shapes by computer. Given

a digital image of a shape, a typical approach to detecting

its corners involves first segmenting the shape (by

thresholding or some similar method), extracting its boun-

dary as a chain code, and then searching for significant

turnings in the boundary. Rutkowski and Rosenfeld [1978],

and the references cited therein, provide a good survey

of such techniques.

However, these techniques rely on prior segmentation

of the shape, and will be led astray by errors in the seg-

mentation. It is therefore of interest to develop tech-

niques of corner detection which can be applied directly to

a gray-level image, without the need for prior segmentation.

Another advantage of such techniques is that the corners de-

tected in the gray-level image can provide important clues

about the shape, and guide a later segmentation process.

For example, corner points could be used as joints for a

polygonal approximation to a shape, without explicit extrac-

tion of the shape's boundary.

In the next section we present a number of techniques for

gray-level corner detection, along with examples of their

use.

A NN"



2. Gray-level corner detection techniques

Every technique discussed below involves the application

of a local operator, in parallel, to neighborhoods.of a gray-

level picture. In each neighborhood, the operator computes

some measure of curvature for an edge that passes through

that neighborhood. However, such a measure will have high

values, not only at corners of a shape, but spread over the

image, because of noise and digitization artifacts. This can

be remedied by multiplying the curvature measure by the local

gradient magnitude. The resulting quantity will take high

values only where there is a strong edge which turns rapidly,

that is, at conspicuous corners. (For display, the absolute

value of this quantity is further multiplied by a variable

scale factor in order to make use of the full range of dis-

playable gray levels.) The local gradient is calculated by

applying horizontal and vertical Prewitt operators (Prewitt

1970] to measure the x and y components of the gradient, and

then converting to polar coordinates in order to obtain gra-

dient magnitude and direction. Two images are used as examples

(see Figure 1). The first is a picture of a maple leaf with

sharp edges and corners. The second is photomicrograph of

chromosomes with blurred edges and ill-defined corners.
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2.1 Gradient magnitude of gradient direction

The first'method considered is based on the followingIobservation: If gradient directions are taken as lying in
the range -180 to +180 degreesi and their absolute values

displayed as a gray-level picture, then this direction pic-

ture will show changes of brightness precisely where the

original picture had changes of edge direction. (The choice

of range and taking of absolute values are required to pre-

vent a spurious discontinuity inedge directions at 180 de-

grees.) These brightness changes can be found by measuring

the gradient magnitude of the direction picture. As indi-

cated above, it will be necessary to multiply this result by

the gradient magnitude of the original picture in order to

obtain a true corner-detection measure.

Figure 2 shows some results obtained with this technique.



2.2 Change of direction along edge

The results obtained above, while they show promise, are

rather disappointing, since the second application of the

edge detector measures indiscriminately any change in edge

direction. It is preferable to measure only direction changes

along the edge, since these correspond more closely to turns

in the boundary of an object. This can be achieved by once

again measuring the gradient direction in the original picture,

and then applying a 3 by 3 operator to the resulting picture.

This operator examines each neighborhood, and determines which

opposing pair of non-central pixels lie closest to the line

that passes through the center pixel and is perpendicular to

the gradient direction at the center pixel. The result of the

operator is the difference between the gradient directions at

the two pixels thus determined. If the signed difference is

taken, and proper conventions are observed, it is possible to

extract information about the direction of curvature, as well

as its magnitude. Once again, this curvature measure must be

multiplied by the gradient magnitude.

Some results obtained by this technique are shown in Figure

3. They are significantly better than those of method 2.1 above.

It should be remarked at this point that both this and the pre-

vious technique effectively use 5 by 5 operators, since they in-

volve the application of a 3 by 3 operator to the results of

another 3 by 3 operator.



2.3 An-gle between most similar neighbors

4 If an edge passes through the center of a neighborhood,

then those pixels that lie along the edge should have gray

levels similar to that of the center pixel, while those off

the edge should be brighter or darker. In a 3 by 3 neighbor-

hood, we can take the two non-central pixels nearest in gray

level to the center pixel (call them A and B, and the center

pixel C). We can then take the difference in direction between

the vectors AC and CB, and use this difference as a measure of

curvature.

Figure 4 shows some results obtained with this technique.

They are hardly satisfactory, mostly because the 3 by 3 neigh-

borhood used permits only four different changes of direction

(0, 45, 90, and 135 degrees), and is unduly sensitive to noise.

The method to be described next was designed to reduce this

noise sensitivity.



2.4 Turning of fitted surface

In general, a property of a gray-level image can be com-

puted by fitting a function of two spatial variables to the

gray-level values in the image, and then determining the cor-

responding property of the fitted function by analytic means.

Typically, the function is a polynomial of fairly low degree,

which fits the gray-level data in a small local neighborhood

with minimal sum of squared errors [Prewitt 1970, Beaudet 1978].

Suppose we have fitted a function g(x,y) to the gray levels

in a picture neighborhood. For simplicity, assume that the

neighborhood is square, an odd number of pixels along a side,

with the origin of a local Cartesian coordinate system at its

center pixel. Let e(x,y) be the gradient direction given by

tane = gy/gx

at any point (x,y). (Below, the arguments of functions will

be omitted for brevity. They are always assumed to be (x,y).)

The partial derivatives of 8 are

= -xxg

x 2 2
g +gy

gyygx g xY 9Y

y 2~ 2

Now, the gradient vector

(gxgy)

is directed across the edge, so the vector

(-gy,gx)

y x ....



(at right angles to the gradient) is directed along the edge.

Projecting the change of gradient direction vector

(ex,e Y)

along the edge, and multiplying the result by the local gra-

dient magnitude, gives the result

k g gx e - g9 8 x

x gy

- gxx g 2+ gyyg 2 -

2 + 2g x +gy

This quantity, evaluated at the center of the neighborhood,

measures the rate of change of gradient direction along an edge,

multiplied as usual by the gradient magnitude. It can be re-

garded as a continuous analog of method 2.2 above.

This same quantity can be derived in another way as follows:

Consider the contour line passing through the center of the

neighborhood, given by the equation

G(x,y) = g(x,y) - g(0,0) = 0

Assuming proper behavior of the function g, we can without loss

of generality take this equation to define y as a function of

x near the origin. By implicit differentiation we can determine

the first and second derivatives of y with respect to x, in

terms of the partial derivatives of g. By substituting into

the expression for the curvature of a plane curve,



d 2y/dx 2

(1 + (dy/dx)2)
3 / 2

and multiplying by the gradient magnitude, we again obtain

the expression for k derived above. Thus k can also be re-

garded as the curvature of a contour line, the continuous

analog of method 2.3 above.

Figures 5, 6, and 7 show results obtained using this

method, fitting a second order polynomial surface to square

neighborhoods of sizes 3, 5, and 7, respectively. The deri-

vation of the best-fit surface is presented in the Appendix.



2.5 Beaudet's DET

Beaudet [1978] defines an operator called DET,

2gxyy - xy

which responds at corners and saddle points of a surface.

Figures 8, 9, and 10 show some results obtained with this

operator, again using a second order polynomial surface and

neighborhoods of sizes 3, 5, and 7, respectively. Notice that

DET need not be multiplied by the gradient magnitude in order

to produce meaningful results. In fact, DET does not respond

at all when positioned exactly on an edge. Near a corner of

a shape DET responds (with opposite signs) on both sides of

the edge. DET fares badly with very sharp edges such as are

found on the maple leaf.

4. *4.



2.6 Better localization of corners

The responses of most of the above detectors are somewhat

spread out, especially with the larger sized neighborhoods.

The localization of corners can be improved by pointwise

multiplication of the outputs of detectors of various sizes

(with appropriate rescaling), or by applying isotropic non-

maximum suppression. (See Figure 11.)

A further problem arises with the methods that use multi-

plication by the gradient magnitude: If the edge near a corner

is blurred, then the corner detector will respond all the way

across the edge. This can be remedied by applying non-maximum

suppression (along the gradient direction) to th2 edge magni-

tudes before using them for multiplication. Results of this

improvement are shown in Figure 12.

71. 7
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3. Conclusions

We have investigated a number of techniques for detecting

the corners of a shape in a gray-level image, prior to extrac-

tion of the shape. Of these techniques, the most successful

appears to be method 2.4. Its success can be attributed to

three causes: Firstly, the fitting of a surface virtually eli-

minates the effects of noise. Secondly, the fitted surface is

of high enough order to capture the interesting properties of

the neighborhood's gray-level pattern. For example, a fitted

plane would not have been adequate. And thirdly, the operator

used is based upon two intuitive characterizations of a gray-

level corner which correspond closely to the notion of a corner

in an already segmented shape. The results of method 2.5

(Beaudet's DET) are equally good, except for its failure at

very sharp corners. It too is based on analytically derived

properties of a fitted surface of adequate order. Various

techniques can be used to improve the localization of corners

detected by these methods.

*kA.--



j

4i Appendix: Best-fit surface

Suppose we have a subset of a digital picture given by

the pixels with Cartesian coordinates (xl,y2), (x2,y2),

(xn,yn) with corresponding gray levels zl,z2,...,zn. For a

second order polynomial surface

g(x,y) = ax2 + by 2 + cxy + dx + ey + f

the sum of squared errors on this subset is given by

2 22E (z i - (ax1 + byi + cxiY i + dx i + ey i + f))2
i=1

The quadratic surface which minimizes this error can be found

by expanding this expression, then differentiating partially

with respect to the six parameters a, b, c, d, e, and f. At

the minimum, these partial derivatives must all be zero,

leading to a set of six simultaneous linear equations in the

parameters, with coefficients of the form
n
E x pyq ri=l1 1 1

which we will denote by the shorthand notation Spqr*

If we restrict our attention to a square subset of a pic-

ture, an odd number of pixels along a side, with the origin at

the center pixel of the square, then the system of equations

is considerably simplified. In particular,

S =5
pqO qpO

and if p or q is odd, then

SpqO 0



Making use of the additional identity that

2 = s
S20 0 S0 0 0 22 0

(easily proven by induction on the side of the neighborhood),

we can fairly readily derive the following expressions for the

parameters of the best-fit quadratic. Let

S 400  S S2 20

S2 00

s000 s400 s 200

s s + S20
Y 000040 200 )

Then

b ~ 0 2 1 -S 0 0 1

S2 20  S200  S20 0

f =YS 00 1 - (S2 0 1 + s01

For the 3 by 3 case, a =1/2, 8= 1/3, y= 5/9,

s 220 =4, and S 200 =6.



Relating these coefficients to Beaudet's notation, we have

I - g(0,0) = f

I= g(0,0) = d

Iy gy (0,0) = e

Ixy = (0,0) = c

Ixx = gxx(0,0) = 2a

I yy= gyy (0,0) = 2b.

These derivatives can be computed directly from an image by

the application of appropriate linear templates. See Beaudet's

paper for these templates, and templates for higher order

derivatives based on higher order fitted polynomials. (Note

that he uses row-column coordinates rather than Cartesian

coordinates.) Morgenthaler and Rosenfeld [19801 derive first

partial derivatives for "images" with more than two dimensions.
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Figure 1
(a) (Top-left) Picture of maple leaf
(b) (Top-right) Gradient magnitude of la (3x3 Prewitt)
(c) (Bottom-left) Photomicrograph of chromosomes
(d) (Bottom-right) Gradient magnitude of lc (3x3 Prewitt)

Figure 2
(a) (Top-left) Method 2.1 applied to la (scale factor 7.0)
(b) (Top-right) Figure 2a multiplied by gradient magni-

tude (scale factor 0.412)
(c) (Bottom-left) Method 2.1 applied to ic (scale factor

7.0)
(d) (Bottom-right) Figure 2c multiplied by gradient

magnitude (scale factor 0.875)
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Figure 3
(a) (Top-left) Method 2.2 applied to la (scale factor 20.0)
(b) (Top-right) Figure 3a multiplied by gradient magnitude

(scale factor 1.18)
(c) (Bottom-left) Method 2.2 applied to 2c (scale factor 20.0)
(d) (Bottom-right) Figure 3c multiplied by gradient magni-

tude (scale factor 2.5)

Figure 4
(a) (Top-left) Method 2.3 applied to la (scale factor 21.0)
(b) (Top-right) Figure 4a multiplied by gradient magnitude

(scale factor 1.24)
(c) (Bottom-left) Method 2.3 applied to lc (scale factor 21.0)
(d) (Bottom-right) Figure 4c multiplied by gradient magnitude

(scale factor 2.63)
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Figure 5 (Method 2.4 using 3x3 neighborhoods)
(a) (Top-left) Method 2.4 applied to la (scale factor 10.0)
(b) (Top-right) Figure 5a multiplied by gradient magnitude

(scale factor 10.0)
(c) (Bottom-left) Method 2.4 applied to ic (scale factor 20.0)
(d) (Bottom-right) Figure 5c multiplied by gradient magnitude

(scale factor 30.0)

Figure 6 (Analogous to Figure 5, but using 5x5 neighborhoods)
(a) (Top-left) scale factor 20.0
(b) (Top-right) scale factor 20.0
(c) (Bottom-left) scale factor 40.0
(d) (Bottom-right) scale factor 60.0

f|
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Figure 7 (Analogous to Figure 5, but using 7x7 neighborhoods)
(a) (Top-left) scale factor 40.0
(b) (Top-right) scale factor 25.0
(c) (Bottom-left) scale factor 80.0
(d) (Bottom-right) scale factor 80.0

Figure 8 (Method 2.5 using 3x3 neighborhoods)
(a) (Top-left) Method 2.5 applied to la (scale factor 2.0)

(b) (Top-right) Figure 8a multiplied by gradient magnitude
(scale factor 0.1)

(c) (Bottom-left) Method 2.5 applied to ic (scale factor 20.0)

(d) (Bottom-right) Figure 8c multiplied by gradient magnitude
(scale factor 2.5)
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Figure 9 (Analogous to Figure 8, but using 5x5 neighborhoods)
(a) (Top-left) scale factor 10.0
(b) (Top-right) scale factor 1.0
(c) (Bottom-left) scale factor 40.0
(d) (Bottom-right) scale factor 5.0

Figure 10 (Analogous to Figure 8, but using 7x7 neighborhoods)
(a) (Top-left) scale factor 40.0
(b) (Top-right) scale factor 4.0
(c) (Bottom-left) scale factor 80.0
(d) (Bottom-right) scale factor 10.0

iV
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Figure 11
(a) (Top-left) Figures 5b, 6c, and 7b multiplied together
(b) (Top-right) Isotropic non-maximum suppression applied

to Figure 7b
(c) (Bottom-left) Figures 5d, 6d, and 7d multiplied together
(d) (Bottom-right) Isotropic non-maximum suppression applied

to Figure 7d

Figure 12 (Uses gradient computed on 5x5 neighborhood)
(a) (Top-left) Gradient magnitude of la after non-maximum

suppression along gradient direction (scale factor 5.0)
(b) (Top-right) Same as 6b, but using gradient magnitude

after non-maximum suppression along gradient direction
(c) (Bottom-left) Gradient magnitude of lc after non-maximum

suppression along gradient direction (scale factor 5.0)
(d) (Bottom-right) Same as 6d, but using gradient magnitude

after non-maximum suppression along gradient direction
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